Small-molecule High-throughput Screening Identifies an MEK Inhibitor PD198306 that Enhances Sorafenib Efficacy via MCL-1 and BIM in Hepatocellular Carcinoma Cells (2024)

Abstract

Background: Sorafenib is the most widely used systematic therapy drug for treating unresectableHepatocellular Carcinoma (HCC) but showed dissatisfactory efficacy in clinical applications.

Objective: We conducted a combinational quantitative small-molecule high-throughput screening(qHTS) to identify potential candidates to enhance the treatment effectiveness of sorafenib.

Methods: First, using a Hep3B human HCC cell line, 7051 approved drugs and bioactive compoundswere screened, then the primary hits were tested with/without 0.5 μM sorafenib respectively,the compound has the half maximal Inhibitory Concentration (IC50) shift value greater than 1.5 wasthought to have the synergistic effect with sorafenib. Furthermore, the MEK inhibitor PD198306was selected for the further mechanistic study.

Results: 12 effective compounds were identified, including kinase inhibitors targeting MEK,AURKB, CAMK, ROCK2, BRAF, PI3K, AKT and EGFR, and a μ-opioid receptor agonist and a Ltypecalcium channel blocker. The mechanistic research of the combination of sorafenib plusPD198306 showed that the two compounds synergistically inhibited MEK-ERK and mTORC1-4EBP1 and induced apoptosis in HCC cells, which can be attributed to the transcriptional and posttranslationalregulation of MCL-1 and BIM.

Conclusion: Small-molecule qHTS identifies MEK inhibitor PD1938306 as a potent sorafenib enhancer,together with several novel combination strategies that are valuable for further studies.

Keywords: Small-molecule high-throughput screening, hepatocellular carcinoma, sorafenib, MEK inhibitor, angiogenesis, calcium channel blocker.

« Previous Next »

Graphical Abstract

[1]

Adnane, L.; Trail, P.A.; Taylor, I.; Wilhelm, S.M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol., 2006, 407, 597-612.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1016/S0076-6879(05)07047-3] [PMID: 16757355]

[2]

Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1056/NEJMoa0708857] [PMID: 18650514]

[3]

Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; Xu, J.; Sun, Y.; Liang, H.; Liu, J.; Wang, J.; Tak, W.Y.; Pan, H.; Burock, K.; Zou, J.; Voliotis, D.; Guan, Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol., 2009, 10(1), 25-34.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1016/S1470-2045(08)70285-7] [PMID: 19095497]

[4]

Huang, R.; Southall, N.; Wang, Y.; Yasgar, A.; Shinn, P.; Jadhav, A.; Nguyen, D.T.; Austin, C.P. The NCGC pharmaceutical collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci. Transl. Med., 2011, 3(80), 80ps16.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1126/scitranslmed.3001862] [PMID: 21525397]

[5]

Sun, W.; Tanaka, T.Q.; Magle, C.T.; Huang, W.; Southall, N.; Huang, R.; Dehdashti, S.J.; McKew, J.C.; Williamson, K.C.; Zheng, W. Chemical signatures and new drug targets for gametocytocidal drug development. Sci. Rep., 2015, 4(1), 3743.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1038/srep03743] [PMID: 24434750]

[6]

Sima, N.; Sun, W.; Gorshkov, K.; Shen, M.; Huang, W.; Zhu, W.; Xie, X.; Zheng, W.; Cheng, X. Small molecules identified from a quantitative drug combinational screen resensitize cisplatin’s response in drug-resistant ovarian cancer cells. Transl. Oncol., 2018, 11(4), 1053-1064.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1016/j.tranon.2018.06.002] [PMID: 29982103]

[7]

Chen, B.; Sirota, M.; Fan-Minogue, H.; Hadley, D.; Butte, A.J. Relating hepatocellular carcinoma tumor samples and cell lines using gene expression data in translational research. BMC Med. Genomics, 2015, 8(Suppl. 2), S5.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1186/1755-8794-8-S2-S5]

[8]

Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1158/0008-5472.CAN-09-1947] [PMID: 20068163]

[9]

Ciruela, A.; Dixon, A.K.; Bramwell, S.; Gonzalez, M.I.; Pinnock, R.D.; Lee, K. Identification of MEK1 as a novel target for the treatment of neuropathic pain. Br. J. Pharmacol., 2003, 138(5), 751-756.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1038/sj.bjp.0705103] [PMID: 12642375]

[10]

Pelletier, J.P.; Fernandes, J.C.; Brunet, J.; Moldovan, F.; Schrier, D.; Flory, C.; Martel-Pelletier, J. In vivo selective inhibition of mitogen-activated protein kinase kinase 1/2 in rabbit experimental osteoarthritis is associated with a reduction in the development of structural changes. Arthritis Rheum., 2003, 48(6), 1582-1593.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1002/art.11014] [PMID: 12794826]

[11]

Advani, S.H. Targeting mTOR pathway: A new concept in cancer therapy. Indian J. Med. Paediatr. Oncol., 2010, 31(4), 132-136.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.4103/0971-5851.76197] [PMID: 21584218]

[12]

Samatar, A.A.; Poulikakos, P.I. Targeting RAS–ERK signalling in cancer: Promises and challenges. Nat. Rev. Drug Discov., 2014, 13(12), 928-942.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1038/nrd4281] [PMID: 25435214]

[13]

Lake, D.; Corrêa, S.A.L.; Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci., 2016, 73(23), 4397-4413.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1007/s00018-016-2297-8] [PMID: 27342992]

[14]

Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem. Sci., 2011, 36(6), 320-328.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1016/j.tibs.2011.03.006] [PMID: 21531565]

[15]

Ma, L.; Chen, Z.; Erdjument-Bromage, H.; Tempst, P.; Pandolfi, P.P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell, 2005, 121(2), 179-193.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1016/j.cell.2005.02.031] [PMID: 15851026]

[16]

Tomiyama, A.; Tachibana, K.; Suzuki, K.; Seino, S.; Sunayama, J.; Matsuda, K.; Sato, A.; Matsumoto, Y.; Nomiya, T.; Nemoto, K.; Yamash*ta, H.; Kayama, T.; Ando, K.; Kitanaka, C. MEK-ERK-dependent multiple caspase activation by mitochondrial proapoptotic Bcl-2 family proteins is essential for heavy ion irradiation-induced glioma cell death. Cell Death Dis., 2010, 1(7), e60.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1038/cddis.2010.37]

[17]

Guo, H.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Wang, X.; Wu, B.; Chen, K.; Deng, J. Modulation of the PI3K/Akt Pathway and Bcl-2 family proteins involved in chicken’s tubular apoptosis induced by nickel chloride (NiCl2). Int. J. Mol. Sci., 2015, 16(9), 22989-23011.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.3390/ijms160922989] [PMID: 26404262]

[18]

Dai, Y.; Jin, S.; Li, X.; Wang, D. The involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer. Oncotarget, 2017, 8(1), 1354-1368.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.18632/oncotarget.13817] [PMID: 27935869]

[19]

Pandey, M.K.; Gowda, K.; Doi, K.; Sharma, A.K.; Wang, H.G.; Amin, S. Proteasomal degradation of Mcl-1 by maritoclax induces apoptosis and enhances the efficacy of ABT-737 in melanoma cells. PLoS One, 2013, 8(11), e78570.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1371/journal.pone.0078570] [PMID: 24223823]

[20]

Domina, A.M.; Vrana, J.A.; Gregory, M.A.; Hann, S.R.; Craig, R.W. MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene, 2004, 23(31), 5301-5315.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1038/sj.onc.1207692] [PMID: 15241487]

[21]

Tong, J.; Wang, P.; Tan, S.; Chen, D.; Nikolovska-Coleska, Z.; Zou, F.; Yu, J.; Zhang, L. Mcl-1 degradation is required for targeted therapeutics to eradicate colon cancer cells. Cancer Res., 2017, 77(9), 2512-2521.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1158/0008-5472.CAN-16-3242] [PMID: 28202514]

[22]

Wang, R.; Xia, L.; Gabrilove, J.; Waxman, S.; Jing, Y. Downregulation of Mcl-1 through GSK-3β activation contributes to arsenic trioxide-induced apoptosis in acute myeloid leukemia cells. Leukemia, 2013, 27(2), 315-324.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1038/leu.2012.180] [PMID: 22751450]

[23]

Gregory, M.A.; Qi, Y.; Hann, S.R. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J. Biol. Chem., 2003, 278(51), 51606-51612.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1074/jbc.M310722200] [PMID: 14563837]

[24]

Kazi, A.; Xiang, S.; Yang, H.; Delitto, D.; Trevino, J.; Jiang, R.H.Y.; Ayaz, M.; Lawrence, H.R.; Kennedy, P.; Sebti, S.M. GSK3 suppression upregulates β-catenin and c-Myc to abrogate KRas-dependent tumors. Nat. Commun., 2018, 9(1), 5154.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1038/s41467-018-07644-6] [PMID: 30514931]

[25]

Jossé, L.; Xie, J.; Proud, C.G.; Smales, C.M. mTORC1 signalling and eIF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells. Biochem. J., 2016, 473(24), 4651-4664.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1042/BCJ20160845] [PMID: 27760840]

[26]

Ceballos, M.P.; Angel, A.; Delprato, C.B.; Livore, V.I.; Ferretti, A.C.; Lucci, A.; Comanzo, C.G.; Alvarez, M.L.; Quiroga, A.D.; Mottino, A.D.; Carrillo, M.C. Sirtuin 1 and 2 inhibitors enhance the inhibitory effect of sorafenib in hepatocellular carcinoma cells. Eur. J. Pharmacol., 2021, 892, 173736.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1016/j.ejphar.2020.173736] [PMID: 33220273]

[27]

Wang, X.; Gupta, P.; Jramne, Y.; Danilenko, M.; Liu, D.; Studzinski, G.P. Carnosic acid increases sorafenib-induced inhibition of ERK1/2 and STAT3 signaling which contributes to reduced cell proliferation and survival of hepatocellular carcinoma cells. Oncotarget, 2020, 11(33), 3129-3143.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.18632/oncotarget.27687] [PMID: 32913557]

[28]

Wu, Q.; Wang, X.; Pham, K.; Luna, A.; Studzinski, G.P.; Liu, C. Enhancement of sorafenib-mediated death of hepatocellular carcinoma cells by carnosic acid and vitamin D2 analog combination. J. Steroid Biochem. Mol. Biol., 2020, 197, 105524.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1016/j.jsbmb.2019.105524] [PMID: 31704246]

[29]

Lai, H.Y.; Tsai, H.H.; Yen, C.J.; Hung, L.Y.; Yang, C.C.; Ho, C.H.; Liang, H.Y.; Chen, F.W.; Li, C.F.; Wang, J.M. Metformin resensitizes sorafenib-resistant HCC cells through ampk-dependent autophagy activation. Front. Cell Dev. Biol., 2021, 8, 596655.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.3389/fcell.2020.596655] [PMID: 33681180]

[30]

Huynh, H.; Ong, R.; Goh, K.Y.; Lee, L.Y.; Puehler, F.; Scholz, A.; Politz, O.; Mumberg, D.; Ziegelbauer, K. Sorafenib/MEK inhibitor combination inhibits tumor growth and the Wnt/β catenin pathway in xenograft models of hepatocellular carcinoma. Int. J. Oncol., 2019, 54(3), 1123-1133.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.3892/ijo.2019.4693] [PMID: 30747223]

[31]

Hou, W.; Xia, H.; Zhou, S.; Fan, Z.; Xu, H.; Gong, Q.; Nie, Y.; Tang, Q.; Bi, F. The MEK inhibitors enhance the efficacy of sorafenib against hepatocellular carcinoma cells through reducing p-ERK rebound. Transl. Cancer Res., 2019, 8(4), 1224-1232.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.21037/tcr.2019.07.11] [PMID: 35116864]

[32]

Wang, E.; Kim, D.W.; Mahipal, A.; Chen, D.T.; Cao, B.; Masawi, F.; Kim, R.D. Phase I study of tramatinib combined with sorafenib in patients (pts) with advanced hepatocellular cancer (HCC). J. Clin. Oncol., 2019, 37, 431.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1200/JCO.2019.37.4_suppl.431]

[33]

Wang, C.; Jin, H.; Gao, D.; Lieftink, C.; Evers, B.; Jin, G.; Xue, Z.; Wang, L.; Beijersbergen, R.L.; Qin, W.; Bernards, R. Phospho-ERK is a biomarker of response to a synthetic lethal drug combination of sorafenib and MEK inhibition in liver cancer. J. Hepatol., 2018, 69(5), 1057-1065.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1016/j.jhep.2018.07.004] [PMID: 30030148]

[34]

Chen, Y.; Liu, Y.C.; Sung, Y.C.; Ramjiawan, R.R.; Lin, T.T.; Chang, C.C.; Jeng, K.S.; Chang, C.F.; Liu, C.H.; Gao, D.Y.; Hsu, F.F.; Duyverman, A.M.; Kitahara, S.; Huang, P.; Dima, S.; Popescu, I.; Flaherty, K.T.; Zhu, A.X.; Bardeesy, N.; Jain, R.K.; Benes, C.H.; Duda, D.G. Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors. Sci. Rep., 2017, 7(1), 44123.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1038/srep44123] [PMID: 28276530]

[35]

Tai, W.M.; Yong, W.P.; Lim, C.; Low, L.S.; Tham, C.K.; Koh, T.S.; Ng, Q.S.; Wang, W.W.; Wang, L.Z.; Hartano, S.; Thng, C.H.; Huynh, H.; Lim, K.T.; Toh, H.C.; Goh, B.C.; Choo, S.P. A phase Ib study of selumetinib (AZD6244, ARRY-142886) in combination with sorafenib in advanced hepatocellular carcinoma (HCC). Ann. Oncol., 2016, 27(12), 2210-2215.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1093/annonc/mdw415] [PMID: 27681866]

[36]

Ou, D.L.; Shen, Y.C.; Liang, J.D.; Liou, J.Y.; Yu, S.L.; Fan, H.H.; Wang, D.S.; Lu, Y.S.; Hsu, C.; Cheng, A.L. Induction of Bim expression contributes to the antitumor synergy between sorafenib and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor CI-1040 in hepatocellular carcinoma. Clin. Cancer Res., 2009, 15(18), 5820-5828.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1158/1078-0432.CCR-08-3294] [PMID: 19737956]

[37]

Sieghart, W.; Losert, D.; Strommer, S.; Cejka, D.; Schmid, K.; Rasoul-Rockenschaub, S.; Bodingbauer, M.; Crevenna, R.; Monia, B.P.; Peck-Radosavljevic, M.; Wacheck, V. Mcl-1 overexpression in hepatocellular carcinoma: A potential target for antisense therapy. J. Hepatol., 2006, 44(1), 151-157.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1016/j.jhep.2005.09.010] [PMID: 16289418]

[38]

Zhu, M.; Zhang, Y.M. Function of myeloid cell leukaemia-1 and its regulative relations with hepatocellular carcinoma. Hepatoma Res., 2017, 3, 129-140.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.20517/2394-5079.2017.14]

[39]

Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res., 2006, 66(24), 11851-11858.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1158/0008-5472.CAN-06-1377] [PMID: 17178882]

[40]

Mills, J.R.; Hippo, Y.; Robert, F.; Chen, S.M.H.; Malina, A.; Lin, C.J.; Trojahn, U.; Wendel, H.G.; Charest, A.; Bronson, R.T.; Kogan, S.C.; Nadon, R.; Housman, D.E.; Lowe, S.W.; Pelletier, J. mTORC1 promotes survival through translational control of Mcl-1. Proc. Natl. Acad. Sci. USA, 2008, 105(31), 10853-10858.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1073/pnas.0804821105] [PMID: 18664580]

[41]

Schacter, J.L.; Henson, E.S.; Gibson, S.B. Estrogen regulation of anti-apoptotic Bcl-2 family member Mcl-1 expression in breast cancer cells. PLoS One, 2014, 9(6), e100364.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1371/journal.pone.0100364] [PMID: 24971890]

[42]

Hu, J.; Dang, N.; Menu, E.; De Bryune, E.; Xu, D.; Van Camp, B.; Van Valckenborgh, E.; Vanderkerken, K. Activation of ATF4 mediates unwanted Mcl-1 accumulation by proteasome inhibition. Blood, 2012, 119(3), 826-837.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1182/blood-2011-07-366492] [PMID: 22128141]

[43]

Becker, T.M.; Boyd, S.C.; Mijatov, B.; Gowrishankar, K.; Snoyman, S.; Pupo, G.M.; Scolyer, R.A.; Mann, G.J.; Kefford, R.F.; Zhang, X.D.; Rizos, H. Mutant B-RAF-Mcl-1 survival signaling depends on the STAT3 transcription factor. Oncogene, 2014, 33(9), 1158-1166.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1038/onc.2013.45] [PMID: 23455323]

[44]

Tamburini, J.; Chapuis, N.; Bardet, V.; Park, S.; Sujobert, P.; Willems, L.; Ifrah, N.; Dreyfus, F.; Mayeux, P.; Lacombe, C.; Bouscary, D. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: Rationale for therapeutic inhibition of both pathways. Blood, 2008, 111(1), 379-382.
[https://dx-doi-org.webvpn.ccmu.edu.cn/10.1182/blood-2007-03-080796] [PMID: 17878402]


Rights & Permissions Print Cite

Combinatorial Chemistry & High Throughput Screening

Title:Small-molecule High-throughput Screening Identifies an MEK InhibitorPD198306 that Enhances Sorafenib Efficacy via MCL-1 and BIM inHepatocellular Carcinoma Cells

Volume: 26 Issue: 7

Author(s): Junjie Hong, Wei Zheng and Xiujun Cai*

Affiliation:

      • Department of General Surgery, Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Sir RunRun Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China

      Keywords: Small-molecule high-throughput screening, hepatocellular carcinoma, sorafenib, MEK inhibitor, angiogenesis, calcium channel blocker.

      Abstract:

      Background: Sorafenib is the most widely used systematic therapy drug for treating unresectableHepatocellular Carcinoma (HCC) but showed dissatisfactory efficacy in clinical applications.

      Objective: We conducted a combinational quantitative small-molecule high-throughput screening(qHTS) to identify potential candidates to enhance the treatment effectiveness of sorafenib.

      Methods: First, using a Hep3B human HCC cell line, 7051 approved drugs and bioactive compoundswere screened, then the primary hits were tested with/without 0.5 μM sorafenib respectively,the compound has the half maximal Inhibitory Concentration (IC50) shift value greater than 1.5 wasthought to have the synergistic effect with sorafenib. Furthermore, the MEK inhibitor PD198306was selected for the further mechanistic study.

      Results: 12 effective compounds were identified, including kinase inhibitors targeting MEK,AURKB, CAMK, ROCK2, BRAF, PI3K, AKT and EGFR, and a μ-opioid receptor agonist and a Ltypecalcium channel blocker. The mechanistic research of the combination of sorafenib plusPD198306 showed that the two compounds synergistically inhibited MEK-ERK and mTORC1-4EBP1 and induced apoptosis in HCC cells, which can be attributed to the transcriptional and posttranslationalregulation of MCL-1 and BIM.

      Conclusion: Small-molecule qHTS identifies MEK inhibitor PD1938306 as a potent sorafenib enhancer,together with several novel combination strategies that are valuable for further studies.

      Export Options

      About this article

      Cite this article as:

      Hong Junjie, Zheng Wei and Cai Xiujun*, Small-molecule High-throughput Screening Identifies an MEK InhibitorPD198306 that Enhances Sorafenib Efficacy via MCL-1 and BIM inHepatocellular Carcinoma Cells, Combinatorial Chemistry & High Throughput Screening 2023; 26 (7) . https://dx-doi-org-s.webvpn.ccmu.edu.cn/10.2174/1386207325666220830145026

      DOI
      https://dx-doi-org-s.webvpn.ccmu.edu.cn/10.2174/1386207325666220830145026
      Print ISSN
      1386-2073
      Publisher Name
      Bentham Science Publisher
      Online ISSN
      1875-5402

      About this journal

      Related Journals

      Anti-Cancer Agents in Medicinal Chemistry

      Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

      Current Analytical Chemistry

      Current Computer-Aided Drug Design

      Current Bioactive Compounds

      Current Cancer Drug Targets

      Current Cancer Therapy Reviews

      Current Diabetes Reviews

      Current Drug Safety

      Current Drug Targets

      View More

      Related Books

      Drug Addiction Mechanisms in the Brain

      Botanicals and Natural Bioactives: Prevention and Treatment of Diseases

      Software and Programming Tools in Pharmaceutical Research

      Objective Pharmaceutics: A Comprehensive Compilation of Questions and Answers for Pharmaceutics Exam Prep

      Biosurfactants: A Boon to Healthcare, Agriculture & Environmental Sustainability

      Medicinal Chemistry of Drugs Affecting Cardiovascular and Endocrine Systems

      Frontiers in Computational Chemistry

      Advances in Dye Degradation

      Biological and Medical Significance of Chemical Elements

      Frontiers In Medicinal Chemistry

      View More

      Article Metrics

      Small-molecule High-throughput Screening Identifies an MEK InhibitorPD198306 that Enhances Sorafenib Efficacy via MCL-1 and BIM inHepatocellular Carcinoma Cells (25) 24

      Small-molecule High-throughput Screening Identifies an MEK InhibitorPD198306 that Enhances Sorafenib Efficacy via MCL-1 and BIM inHepatocellular Carcinoma Cells (26) 2

      • About Journal
      • Editorial Board
      • Current Issue
      • Volumes /Issues
      • Author Guidelines
      • Graphical Abstracts
      • Fabricating and Stating False Information
      • Research Misconduct
      • Post Publication Discussions and Corrections
      • Publishing Ethics and Rectitude
      • Increase Visibility of Your Article
      • Archiving Policies
      • Peer Review Workflow
      • Order Your Article Before Print
      • Promote Your Article
      • Manuscript Transfer Facility
      • Editorial Policies
      • Allegations from Whistleblowers
      • Guest Editor Guidelines
      • Editorial Management
      • Fabricating and Stating False Information
      • Publishing Ethics and Rectitude
      • Ethical Guidelines for New Editors
      • Peer Review Workflow
      • Reviewer Guidelines
      • Peer Review Workflow
      • Fabricating and Stating False Information
      • Publishing Ethics and Rectitude
      • Abstract Ahead of Print 16
      • Article(s) in Press 164
      • Free Online Copy
      • Most Cited Articles
      • Most Accessed Articles
      • Editor's Choice
      • Thematic Issues
      • Open Access Articles
      • Library Recommendation
      • Trial Requests
      • Advertise With Us
      • Meet the Executive Guest Editor(s)
      • Brand Ambassador
      • New Journals 2023
      • New Journals 2024
      • Alert Subscription
      • TOC Alert

      © 2024 Bentham Science Publishers | Privacy Policy

      Small-molecule High-throughput Screening Identifies an MEK Inhibitor
PD198306 that Enhances Sorafenib Efficacy via MCL-1 and BIM in
Hepatocellular Carcinoma Cells (2024)

      FAQs

      What drugs are MEK inhibitors? ›

      MEK inhibitors

      The MEK gene works together with the BRAF gene, so drugs that block MEK proteins can also help treat melanomas with BRAF gene changes. MEK inhibitors include trametinib (Mekinist), cobimetinib (Cotellic), and binimetinib (Mektovi).

      What are the FDA approved MEK inhibitors? ›

      To date, four MEK inhibitors have been approved by the United States Food and Drug Administration (FDA), including trametinib, binimetinib, selumetinib, and cobimetinib [19–22].

      What is the success rate of MEK inhibitors? ›

      Approximately 50% of patients with melanoma harbor a BRAF mutation and are eligible for targeted therapy with BRAF/MEK inhibitors (BRAFi/MEKi). Despite a response rate of nearly 70%, more than half of the patients will experience disease progression within a year due to tumor resistance.

      What are the side effects of MEK inhibitors? ›

      The adverse events included diarrhea, vomiting, stomatitis, and dry skin with increased neutropenic effects above what would be expected for docetaxel alone. Further study with larger cohorts will be needed to determine if specific KRAS mutations can further predict for response to MEK inhibition.

      What is the most potent MEK inhibitor? ›

      Compared with other three FDA-approved MEK inhibitors, tunlametinib showed much more potent both in vitro and in vivo. The phosphorylation of ERK, biomarker of MEK inhibition, was evidently inhibited after tunlametinib was administered to cells in vitro or xenograft model in vivo.

      Is MEK a tumor suppressor? ›

      MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1.

      Does trametinib cause weight gain? ›

      An increase in weight-for-age percentile ≥5% was seen in 60% of patients receiving selumetinib and 56% on trametinib.

      What is the first approved MEK inhibitor? ›

      Trametinib was the first MEK inhibitor to be approved by the FDA for the treatment of metastatic or unresectable melanoma in May 2013.

      What are MEK inhibitors for MAPK? ›

      Mitogen-activated protein kinases inhibitors

      MEK inhibitors have clinical activity in melanoma patients who harbor that V600 mutation and are mostly used in combination with BRAF inhibitors. Trametinib and cobimetinib are potent, highly specific inhibitors of MEK1/MEK2.

      What is the full form of MEK inhibitors? ›

      MEK: mitogen-activated protein kinase kinase.

      What is MEK in pharmacology? ›

      MEK is a key enzyme in the Ras/Raf/MEK/ERK signal transduction pathway and mediates cellular responses to different growth signals. This pathway is frequently deregulated in cancer, which makes these enzymes a candiate target for pharmacological antineoplastic treatment.

      Top Articles
      Latest Posts
      Article information

      Author: Madonna Wisozk

      Last Updated:

      Views: 6141

      Rating: 4.8 / 5 (48 voted)

      Reviews: 87% of readers found this page helpful

      Author information

      Name: Madonna Wisozk

      Birthday: 2001-02-23

      Address: 656 Gerhold Summit, Sidneyberg, FL 78179-2512

      Phone: +6742282696652

      Job: Customer Banking Liaison

      Hobby: Flower arranging, Yo-yoing, Tai chi, Rowing, Macrame, Urban exploration, Knife making

      Introduction: My name is Madonna Wisozk, I am a attractive, healthy, thoughtful, faithful, open, vivacious, zany person who loves writing and wants to share my knowledge and understanding with you.